

QUIZ NO: 107

TOPIC: ELECTRICAL ENGINEERING

DATE: 20/09/2022

- 1. If we apply a sinusoidal voltage to a circuit, the product of voltage and current is?
 - [A] true power
 - [B] apparent power
 - [C] average power
 - [D] reactive power

Answer: B

Explanation:-

- If we apply a sinusoidal voltage to a circuit, the product of voltage and current is apparent power. The apparent power is expressed in volt amperes or simply VA.
- 2. The power factor is called leading power factor in case of _____ circuits ?
 - [A] LC
 - [B] RC
 - [C] RL
 - [D] RLC

Answer: B

Explanation:-

The power factor is called leading power factor in case of RC circuits and not in RLC circuits and RL circuits and LC circuits.

- 3. A capacitor, used for power factor correction in a single phase circuit decreases which of the following?
 - [A] Power factor
 - [B] Line current
 - [C] Both Line current and Power factor
 - [D] Neither Line current nor Power factor

Answer: B

Explanation:-

We know that a capacitor is used to increase the Power factor. However, with decrease in line current the power factor is increased. Hence line current decreases.

- **4.** A two branch circuit has a coil of resistance R_1 , inductance L_1 in one branch and capacitance C_2 in the second branch. If R is increased, the dynamic resistance is going to _____?
 - [A] Increase
 - [B] Decrease
 - [C] Remains constant
 - [D] May increase or decrease

Answer: B

Explanation:-

• We know that,

Dynamic resistance = L_{1/[R₁C_{2]}}

So, if R_1 is increased, keeping Inductance and Capacitance same, so The Dynamic resistance will decrease, as the denomination is increasing.

- 5. For making a capacitor, the dielectric should have _____?
 - [A] High relative permittivity
 - [B] Low relative permittivity
 - [C] Relative permittivity = 1
 - [D] Relative permittivity neither too high nor too low

Answer: A

Explanation:-

Relative permittivity is for ideal dielectric which is air. Achieving such a precise dielectric is very difficult.

Low relative permittivity will lead to low value of capacitance. High relative permittivity will lead to a higher value of capacitance.

6. In a parallel RL circuit, 12 A current enters into the resistor R and 16 A current enters into the Inductor L. The total current I the sinusoidal source is

[A] 25 A

?

[B] 4 A

- [C] 20 A
- [D] Cannot be determined

Answer: C

Explanation:-

Currents in resistance and inductance are out of phase by 90°. Hence, $I = I_{1}^{2}+I_{2}^{2}$ Or, $I = [12^{2} + 16^{2}]^{0.5}$ Or, $I = \sqrt{[144+256]} = \sqrt{400}$ = 20 A.

7. Consider a series RLC circuit having resistance = 1Ω , capacitance = 1F, considering that the capacitor gets charged to 10 V. At t = 0 the switch is closed so that i = e^{-2t} . When i = 0.37 A, the voltage across capacitor is

[A] 1 V
[B] 6.7 V
[C] 0.37 V
[D] 0.185 V
Answer: B

Explanation:-

We know that, during discharge of capacitor, $V_c = V_R$ Now, $V_R = 0.67 \times 10 = 6.7 \vee$ So, $V_c = 6.7 \vee$.

- 8. A circuit consists of an excitation voltage V_s, a resistor network and a resistor R. For different values of R, the values of V and I are as given, $R = \infty$, V = 5 volt; R = 0, I = 2.5 A; when $R = 3 \Omega$, the value of V is ?
 - [A] 1 V
 - [B] 2 V
 - [C] 3 V
 - [D] 5 V

Answer: C

Explanation:-

When $R = \infty$, V = 5v, Then, $V_{oc} = 5V$ and the circuit is open When R = 0, I = 2.5AThen, $I_{sc} = 2.5$ and the circuit is short circuited. So, $R_{eq} = VOC/ISC$ $= 5/2.5 = 2 \Omega$ Hence the voltage across 3Ω is 3 volt.

- 9. Three inductors each 30 mH are connected in delta. The value of inductance or each arm of equivalent star is ______?
 - [A] 10 mH
 - [B] 15 mH
 - [C] 30 mH
 - [D] 90 mH

Answer: A

Explanation:-

We know that if an inductor L is connected in delta, then the equivalent star of each arm = LXL/L+L+L Given that, L = 30 mH

- = 30X30/30+30+30
- = 900/90 = 10 mH.

2

10. In a series RLC circuit having resistance $R = 2 \Omega$, and excited by voltage V = 1 V, the average power is 250 mW. The phase angle between voltage and current is

[A] 75°
[B] 60°
[C] 15°
[D] 45°
Answer: D

Explanation:-

VI $\cos \theta = 0.25$ or I $\cos \theta = 0.25$ Or, Z $\cos \theta = 2$ Or, V/I $\cos \theta = 2$ Or, $\cos \theta = 1/\sqrt{2}$ So, from the above equations, $\cos \theta = 0.707$ and $\theta = 45^{\circ}$.

